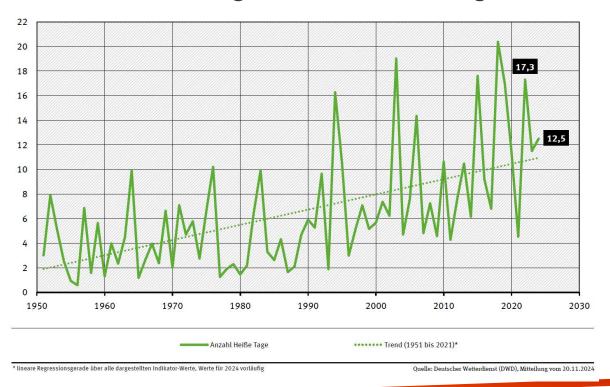
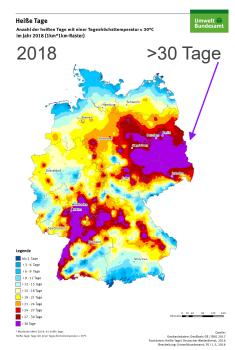


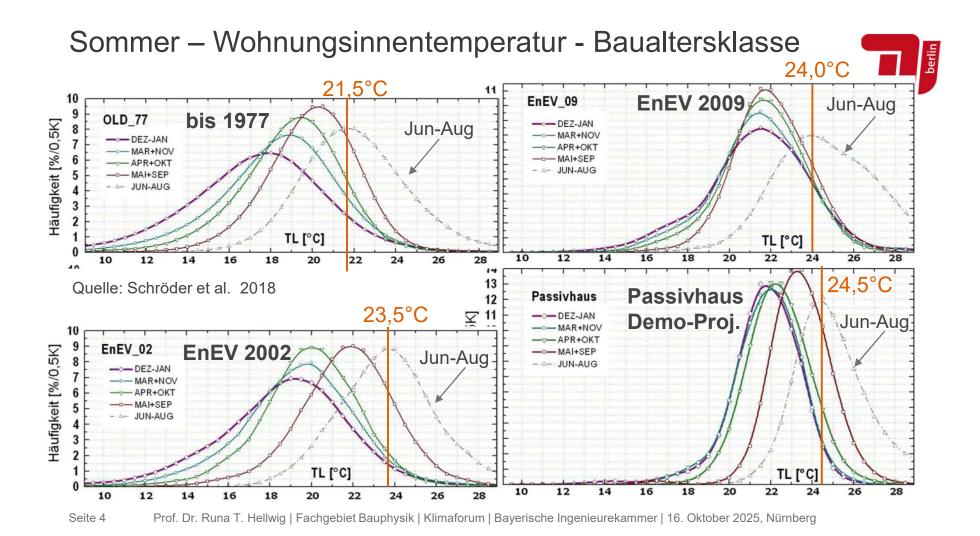
Innenraumtemperaturen im Sommer und deren Wirkungen auf den Menschen – Was bedeutet das?

Prof. Dr.-Ing. Runa T. Hellwig FG Bauphysik, TU Berlin bauphysik@tu-berlin.de

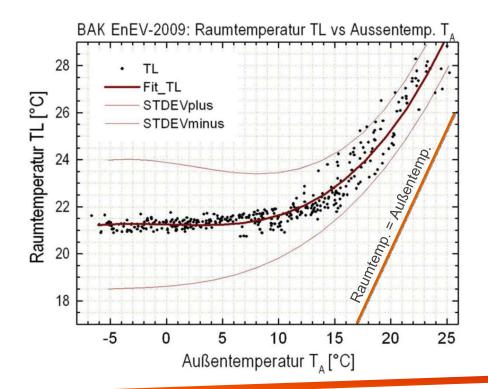
7. Klimaforum, Bayerische Ingenieurekammer,


Klimawandel – Klimaanpassung beim (kommunalen) Planen und Bauen: Realisierbar oder Illusion?, 16. Oktober 2025, Nürnberg


Welche sommerlichen Außen- und Innentemperaturen wurden gemessen?



Klimaveränderung: Anzahl heiße Tage Deutschland



berlin

Tagesmitteltemperatur Raum vs. Tagesmitteltemp. außen

Auch in den Sommermonaten Jun-Aug, also bei mittleren Außentemperaturen über etwa 14 °C hinaus, sind die Tagesmittel der Lufttemperatur im Sommer um 4-5 K höher als die Tagesmitteltemperatur außen, die SD liegt immer oberhalb der Außentemp. Baualtersklasse EnEV 2009

Daten 6 Gebäude, München, GEWOFAG, 48 Wohnungen, Okt 2012-Sept.2013, Daten und Grafik: Schröder et al. 2018

Welche Wirkungen auf den Menschen haben die hohen Temperaturen?

Hitzebeanspruchung & Leistungsfähigkeit in Büroräumen bei erhöhten Außentemperaturen – HESO Projekt

 Ziel: Konkretisierung von Maßnahmen zum Schutz der Gesundheit der Beschäftigten in Arbeitsräumen mit geringem betriebstechnisch bedingtem Wärmeeinfluss bei hochsommerlichen Außentemperaturen

- Kontext: Büroarbeit im Hochsommer
- Treten die bei hohen Raumtemperaturen erwarteten Leistungseinbußen ein?
- Abbildung der arbeitenden Bevölkerung: 20 Männer und Frauen, Altersgruppe 35-45 Jahre
- Messungen von intra-individuellen Unterschieden, Exposition: 4,5 Std.

Zusammenfassung Ergebnisse HESO-Projekt

- Hitze am Arbeitsplatz ist ein Umwelteinfluss, der als belastend empfunden wird
- Betroffene fühlen sich weniger leistungsfähig, angestrengter, schläfriger und weniger ausgeglichen als unter normalen Temperaturen
- Physiologische Reaktionen werden durch Hitze beeinflusst: Herzfrequenz, Hauttemperatur, Hautfeuchte steigen
- keine wesentliche Leistungseinbuße bei 29-32 °C bzw. 33-35 °C im Vergleich zu behaglichen Raumtemperaturen 23-26°C
- Hitzebeanspruchung wird im Interesse einer mentalen Leistung kompensiert
- Hitze beeinflusst Psyche und Körper: die Kompensationsfähigkeit nimmt vermutlich mit zunehmender Expositionszeit ab
- Im Experiment genutzte Maßnahmen: Bekleidung reduzieren, Getränke reichen, Pausen tragen zu der ausgeglichenen Leistung bei

Wirkungen von sommerlichen Temperaturen und von Hitzewellen auf den Menschen

Physiologische Wirkungen

- Erste Reaktionen: Vasodilatation, Schwitzen, Herzfrequenz steigt
- Akklimatisationsreaktionen nach ½ bis 2 Wochen: bessere Wärmeabgabe über die Haut, effizienteres Schwitzen, Absinken der Körper-Kerntemperatur, verbesserte Kreislaufstabilität (Wendt et al 2007, Taylor 2014, Pallubinsky et al. 2018, Pallubinsky, Blondin, Jay 2024)
- Hat der K\u00f6rper bereits Akklimatisation erworben, so kann diese bei erneueter Exposition in k\u00fcrzerer Zeit wiederhergestellt werden, als es dauerte, die Akklimatisation zun\u00e4chst zu etablieren. (Taylor, 2014)
- Keine Exposition → keine Akklimatisation
- Für nicht akklimatisierte Menschen ist eine stärkere Auswirkung von Hitzewellen zu erwarten als für akklimatisierte, (Maloney & Forbes 2011)

Wirkungen von sommerlichen Temperaturen und von Hitzewellen auf den Menschen

Negative gesundheitliche Wirkungen

- Wegen der erhöhten Herzfrequenz zur Aufrechterhaltung des Blutdruckes bei Vasodilatation haben Menschen mit Herz-Kreislauf-Vorerkrankungen ein erhöhtes Risiko bei plötzlicher starker Hitzeexposition wie in Hitzewellen, (z.B. Pallubinsky, Blondin, Jay 2024)
- Betroffen von der Neuverteilung des Blutes können auch die inneren Organe sein, z.B.
 Nieren, durch reduzierten Blutfluss, (z.B. Pallubinsky, Blondin, Jay 2024)
- Dehydrierung durch starkes Schwitzen, ungenügende Flüssigkeitsaufnahme (z.B.
 Pallubinsky, Blondin, Jay 2024), z.B. bei dementen Personen wegen verminderten Durstgefühls
- Fehlende Auskühlung von Schlafzimmern Nachts kann zu unangemessen hohen Temperaturen führen, welche die Schlafqualität beeinträchtigen. Neue Gewohnheiten müssen etabliert werden (leichte Decken etc.) (eigene Erfahrung von Akklimatisationsprozess an tropische Umgebung)

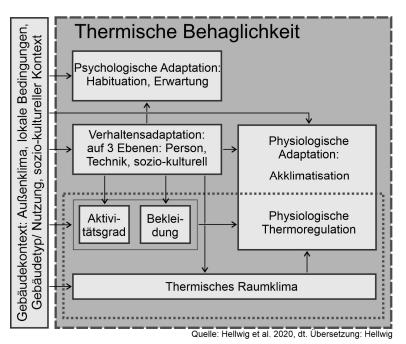
Wirkungen von sommerlichen Temperaturen und von Hitzewellen auf den Menschen

Positive gesundheitliche Wirkungen

- Wiederholte dosierte Exposition, z.B. aktive Akklimatisation, sogar Exposition ohne körperliche Aktivität, verbessert die Wärmeabgabe über die Haut, das Schwitzen wird wirkungsvoller, die Kerntemperatur sinkt, und das Herz-Kreislaufsystem stabilisiert sich schneller (z.B. Pallubinsky, Blondin, Jay 2024)
- Auswirkungen von Exposition in warmer Luft auf den Stoffwechsel: 10 Tage, 4–6 Stunden/Tag, ca. 34 °C verbesserten den Glukose Stoffwechsel bei Übergewichtigen. (z.B. Pallubinsky et al. 2020)
- Besonders für vulnerable Gruppen kann eine Wärmetherapie eine gute Vorbereitung auf Hitzewellen darstellen. (z.B. Pallubinsky, Blondin, Jay 2024)
- Schlussfolgerung: wiederholte kontrollierte Exposition gegenüber Wärme bzw. Hitze verbessert die Resilienz/Hitzetoleranz.

Seite 11

Welche Ansätze bieten Forschungsergebnisse für den Umgang mit Hitze an?


Adaptation – Was lehrt uns Forschung zum adaptiven Behaglichkeitsansatz?

- Im Mittelpunkt des adaptiven Ansatzes steht das adaptive Prinzip:
 - "Wenn eine Veränderung eintritt, die Unbehagen hervorruft, reagieren die Menschen auf eine Weise, die dazu geeignet ist, ihre Behaglichkeit wiederherzustellen." (Humphreys, Nicol, Roaf, 2014)
- Physiologen haben herausgefunden, dass verhaltensbedingte Thermoregulation Vorrang hat vor autonomer Thermoregulation (Schlader, 2014/6, Romanovsky, 2014)
- Unbehaglichkeit dient der Einleitung (verhaltensbedingter) Thermoregulation.

Adaptation – Was lehrt uns Forschung zum adaptiven Behaglichkeitsansatz?

Hellwig et al. https://doi.org/10.54337/aau510903564

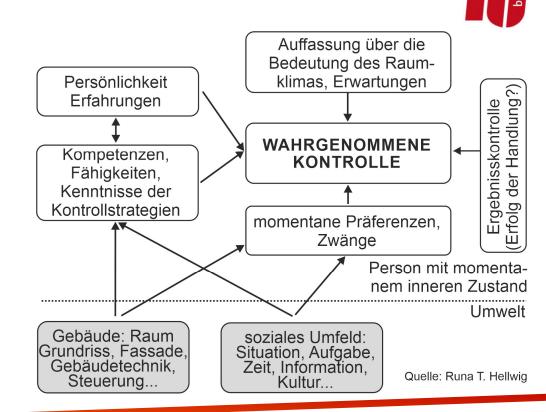
Grundlage: Wärmeaustausch zwischen Mensch und Umgebung (Konvektion, Strahlung, Verdunstung)

+

- 3 Adaptationsprinzipien:
- Verhaltenmäßige Anpassung (z.B. Kleidung, Haltung, Fensteröffnen, Sonnenschutz, Beschwerde, etc.)
- Physiologische Anpassung (Thermoregulation, Akklimatisierung)
- Psychologische Anpassung (z.B. Gewöhnung, Erwartungen, Kontrollgefühl, Kultur)

+

Gebäudekontext: Außenklima, lokale Bedingungen, Gebäudetyp/-nutzung, sozio-kultureller Kontext


Funktion angemessener wahrgenommener Kontrolle

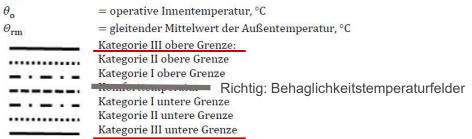
- Das Empfinden von thermischer Unbehaglichkeit hat die Aufgabe menschliche Handlungen zur Wiederherstellung von Behaglichkeit zu initiieren. Dazu muss der Mensch die Möglichkeit haben Handlungen auszuführen.
- Eine erfolgreiche Anpassung des Raumklimas durch eigenes Handeln stärkt unsere Selbstwirksamkeit.
- Das menschliche Grundbedürfnis nach Kontrolle und erfolgreichem Handeln drückt sich auch in der Wahrnehmung von Innenräumen aus.
- Erwartung: 85 % der Büroangestellten wünschen sich Kontrolle über ihr Raumklima (Deutschland, ProKlimA-Studie, N=4394) Bischof et al. 2003, Hellwig, 2005
- In ihren eigenen vier Wänden erwarten Menschen mehr Kontrolle, da dies ihre Privatsphäre ist ("My home is my castle").
- Handlungsoptionen entspannen uns und geben uns das Empfinden von individueller Kontrolle, also Vertrauen.
- Folge: mehr Toleranz, weniger Sensibilität: Beispiel: Das als behaglich empfundene Temperaturband wird weiter.

Einflussfaktoren – Wahrgenommene Kontrolle

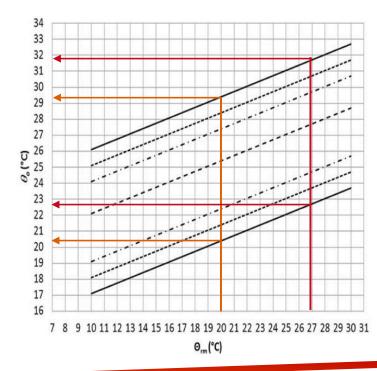
- Hohe wahrgenommene Kontrolle:
- Echte Handlungsoptionen auf
 - Gebäudeebene
 - organisatorischer Ebene
 - personenbezogener Ebene
- · Vorhersehbar reagierende Gebäude
- Handlungen haben Effekt
- Informationen
- Erwartungsmanagement auf allen Ebenen (Gesellschaft, Organisation, Gebäude/Technik)

Hellwig, R. T. (2015). Perceived control in indoor environments: a conceptual approach. *Building Research and Information*, *43*(3), 302-315. https://doi.org/10.1080/09613218.2015.1004150

Adaptives Behaglichkeitsmodell


nach DIN EN 16798-1, Anhang B2.2

- Die Außentemperatur θ_{rm} ist ein 7-tägiger gewichteter gleitender Mittelwert
- Das behagliche Operativtemperaturband θ_o bestimmt sich in Anhängigkeit von diesem gleitenden Mittelwert


```
Beispiele
```

$$\theta_{rm}$$
 = 20°C – Sommer
 θ_{rm} = 27°C - Hitzewelle

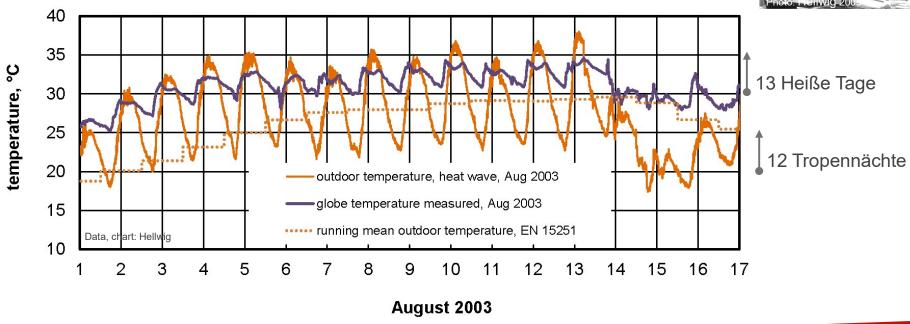
Legende

berlin

Was bedeutet all das für Gebäudeplaner?

Arbeitsstättenregel Raumtemperatur ASR A3.5

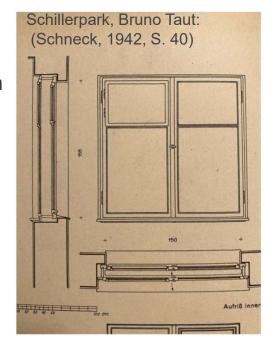
- Elemente: Gesundheitsschutz,
 Erwartungsmanagement, Pflichten für Arbeitgeber und Mitwirkungspflichten Arbeitnehmer
- Bei Außenlufttemp. über 26°C und Innentemperatur über 26°C: sollen Maßnahmen nach Tab. 4 ergriffen werden
- Bei Innentemperaturen über 30°C müssen Maßnahmen nach Tab. 4 ergriffen werden
- Räume mit über 35°C sind während Überschreitung nicht nutzbar ohne Maßnahmen wie bei Hitzearbeit


		Tab 4 Beispielhafte Maßnahmen
	a)	effektive Steuerung des Sonnenschutzes (z. B. Jalousien auch nach der Arbeitszeit geschlossen halten)
	b)	effektive Steuerung der Lüftungseinrichtungen (z. B. Nachtauskühlung)
	c)	Reduzierung der inneren thermischen Lasten (z. B. elektrische Geräte nur bei Bedarf betreiben)
	d)	Lüftung in den frühen Morgenstunden
	e)	Nutzung von Gleitzeitregelungen zur Arbeitszeitverlagerung
	f)	Lockerung der Bekleidungsregelungen
	g)	Festlegung zusätzlicher Entwärmungsphasen
ı	h)	Nutzung von Ventilatoren (z. B. Tisch-, Stand-, Turm- oder Deckenventilatoren)

Das Bereitstellen von Getränken wird explizit erwähnt in Abs. 5!

Hitzewelle 2003, mein Büro München

Fast keine zeitliche Verzögerung der Gebäudeantwort im Hitzewellen-Anstieg


Das Gebäude als Puffer

- Passives Design von Gebäuden wieder zum zentralen Teil der Gebäudeplanung machen
- …auch für den Sommerfall
- Anpassungsplanung etablieren: ausreichendes passives Design für Hitzewellen
- Betrachtung und Nutzbarmachung der Dynamik von Temperatur erscheint als ein Schlüssel für Klimaanpassung und nachhaltiges Bauen und Betreiben
- Das Adaptive Behaglichkeitsmodell berücksichtigt die Adaptationsfähigkeit des Menschen braucht aber bei plötzlichen starken Temperaturanstiegen die Pufferwirkung des Gebäudes um dem menschlichen Körper Zeit für die Adaptation zu ermöglichen
- Aber entfalten neue Gebäude noch eine Pufferwirkung?

Nutzung von passiven oder Niedrigstenergielösungen: Freie Lüftung – passive Kühlung

- Planung für wirksame freie Lüftung
- Fensteröffnungstypen: Verwenden wir die richtigen Fensteröffnungstypen?
- Nur bei wirksamer Nachtauskühlung kann Speichermasse aktiviert werden
- Festverglasung: Eine Lüftungsanlage mit Wärmerückgewinnung ist kein Standardersatz (trotz aktiviertem Bypass) für freie Nachtauskühlung

Nutzung von passiven oder Niedrigstenergielösungen:

Freie Lüftung – passive Kühlung

- Planung für wirksame freie Lüftung
- Grundrissplanung: Zweispänner vs Mehrspänner und der Einfluss auf die Querlüftbarkeit
- Einst erhielten Wohnungsbauunternehmen nur zinsgünstige Kredite, wenn sie Querlüftung in den Wohnungen einplanten:

Bauordnung 1925 Berlin §26, Abs. 5 "Auf eine Treppe dürfen in jedem Geschoß im allgemeinen nicht mehr als zwei Wohnungen angewiesen sein." Köppen, 1925, S.40

Nutzung von passiven oder Niedrigstenergielösungen: Ventilatoren

- Erhöhte Luftgeschwindigkeit bewirkt Kühlung durch verbesserte konvektive Wärmeabgabe und durch verbesserte Verdunstung (effektiveres Schwitzen)
- Nationale (und internationale) Normung schließt Temperaturkompensation mit erhöhter Luftgeschwindigkeit für stationäre Arbeitsplätze bereits ein: DIN EN 16798-1 (Tabelle B4): v= 0,6 m/s → Kompensation von 1,2 Kelvin
- Ventilatoren haben in jedem Fall Kühlwirkung bei Temperaturen bis 35°C, über 35°C sind detailliertere Betrachtungen der Klimarand- und Arbeitsbedingungen erforderlich (Klimasummenmaße)
- Kürzlich in ASR A3.5, Tab 4, aufgenommen "h) Nutzung von
 Ventilatoren (z.B. Tisch-, Stand-, Turm-, oder Deckenventilatoren)"

Innenraumtemperaturen im Sommer und deren Wirkungen auf den Menschen – Was bedeutet das?

- Die Innentemperaturen gerade in energieeffizienten Gebäuden bewegen sich in eng begrenzten Bereichen, auch nachts.
- Daher das Risiko für sehr warme Schlafräume hoch.
- Hitze stellt ein Risiko dar, insbesondere für vulnerable Personen. Starke Wärme kann jedoch auch positive Gesundheitseffekte erzielen (Wärmetherapien/ -training)
- Bauliche passive Maßnahmen sind die Grundlage und hinreichend bekannt; nur deren Umsetzung ist unbefriedigend.
- Gebäude als Puffer zur leichteren menschlichen Adaptation planen.
- Das Adaptationsvermögen des Menschen im Planungsprozess mitdenken.
- Handlungsoptionen für Nutzerinnen mit einplanen.
- Menschliche Adaptationsfähigkeit verdient mehr Beachtung und sollte Teil der Anpassungsstrategien werden - dann bleibt Spielraum für Lösungen für Risikogruppen.

Publikationen zum Thema Hitze und Sommer

- te Kulve, M., Hellwig, R. T., van Dijken, F., & Boerstra, A. (2022). Do children feel warmer than adults? Overheating prevention in schools in the face of climate change. In: F. Nicol, H. B. Rijal, & S. Roaf (Eds.), Routledge Handbook of Resilient Thermal Comfort (1 ed.). Routledge. https://doi.org/10.4324/9781003244929-1
- Hellwig, R. T. et al. (2022). Guidelines for low energy building design based on the adaptive thermal comfort concept Technical report: IEA EBC Annex 69: Strategy and Practice of Adaptive Thermal Comfort in Low Energy Buildings. Aalborg University, Department of Architecture Design and Media Technology. https://doi.org/10.54337/aau510903564
- Al-Atrash, F., Hellwig, R. T., & Wagner, A. (2020). The degree of adaptive thermal comfort in office workers in a hot-summer Mediterranean climate. Energy and Buildings, 223, Article 110147. https://doi.org/10.1016/j.enbuild.2020.110147
- Hellwig, R. T., Teli, D., Schweiker, M., Choi, J.-H., Lee, J. M. C., Mora, R., Rawal, R., Wang, Z., & Al-Atrash, F. (2019). A framework for adopting adaptive thermal comfort principles in design and operation of buildings. Energy and Buildings, 205, Article 109476. https://doi.org/10.1016/j.enbuild.2019.109476
- Hellwig, R.T. (2018): Revisiting overheating indoors. Proceedings of 10th Windsor Conference: Rethinking Comfort Cumberland Lodge, Windsor, UK, 12-15 April 2018. London: Network for Comfort and Energy Use in Buildings, http://nceub.org.uk, paper 0116 (https://vbn.aau.dk/en/publications/revisiting-overheating-indoors/)
- Hellwig, R.T.; Nöske, I.; Brasche, S.; Gebhardt Hj.; Levchuk, I.; Bischof, W. (2012): Hitzebeanspruchung und Leistungsfähigkeit in Büroräumen bei erhöhten Außentemperaturen HESO. Abschlussbericht. Bundesanstalt für Arbeitsschutz und Arbeitsmedizin, Dortmund, Berlin, Dresden, ISBN 978-3-88261-142-7. 65 pp, www.baua.de/dok/8656798
- Hellwig, R.T.(2016):Overheating in classrooms sign for inevitable need for cooling or the essential need for integrated design? International Conference on Indoor Air Quality, Ventilation & Energy Conservation in Buildings, IAQVEC 23-26 Oct 2016 in Songdo Korea, paper 1060, oral presentation, 8pp
- Hellwig, R.T. (2015): Perceived control in indoor environments: a conceptual approach. Building Research and Information, Special Issue: Counting the costs of comfort, 43, 3, 302-315. http://dx.doi.org/10.1080/09613218.2015.1004150
- Hellwig, R. T., Sedlmeier, M., Tanzer, C. (2015). Prospects of Improving the Indoor Air Quality in Classrooms by Reactivating Historic Ventilation Stacks. International Journal of Ventilation, Vol. 14(2), pp. 141-152, http://dx.doi.org/10.1080/14733315.2015.11684076
- Hackl, M.; Maurer, J.; Hellwig, R.T. (2015): Indoor climate and user satisfaction in classrooms after energetic retrofitting. Healthy Buildings Conference Europe, Eindhoven, The Netherlands, 2015. 18.-20.Mai 2015, paper 503, oral presentation, 8pp.
- Tschakrow, E.; Hellwig, R.T. (2015): Comparison of control strategies of venetian blinds regarding visual and thermal comfort in summer in classrooms. Healthy Buildings Conference Europe, Eindhoven, The Netherlands, 2015, 18.-20.Mai 2015, paper 113, oral presentation, 8pp
- Hellwig, R.T.; Hackl, M., Nocke, C. (2015): Lüften in Schulen. Bessere Lernbedingungehn für junge Menschen. in German FIZ Karlsruhe (Ed.), BINE Themeninfo I/2015, Energieforschung kompakt, ISSN 1610-8302, Contribution of 20 pages. Downloadable pdf. http://www.bine.info/publikationen/publikationen/publikation/lueften-in-schulen/
- Hellwig, R.T.; Bux, K.; Pangert, R.(2012): Zur Neufassung der Arbeitsstättenregel ASR A3.5. Raumtemperatur. Bauphysik, 34, 6, 268-274. https://doi.org/10.1002/bapi.201200036
- Hellwig, R.T.; Nöske, I.; Brasche, S.; Gebhardt Hj.; Levchuk, I.; Bux, K.; Bischof, W. (2012): Subjective and Objective Assessment of Office Performance and Heat Strain at Elevated Temperatures The HESO-Study. International Society of Indoor Air Quality and Climate -ISIAQ- Healthy Buildings Conference, Brisbane 8.-12. July, 2012, Session 7C.7,
- Schmidt, S.; Hellwig, R.T.; Steiger, S.; Hauser, G. (2012): Comparing Different Classroom Ventilation Concepts with Respect to Indoor Air Quality, Thermal Comfort and Energy.
 International Society of Indoor Air Quality and Climate -ISIAQ- Healthy Buildings Conference, Brisbane 8.-12. July, 2012, Session 6A.5, 6 pp.