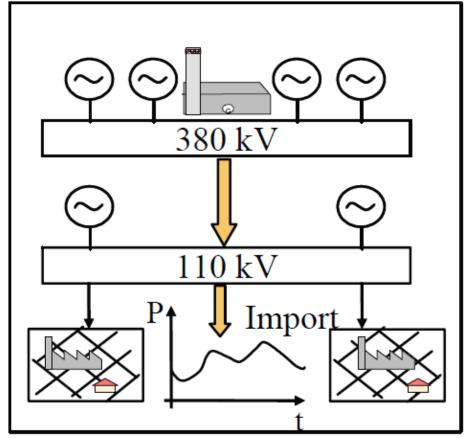
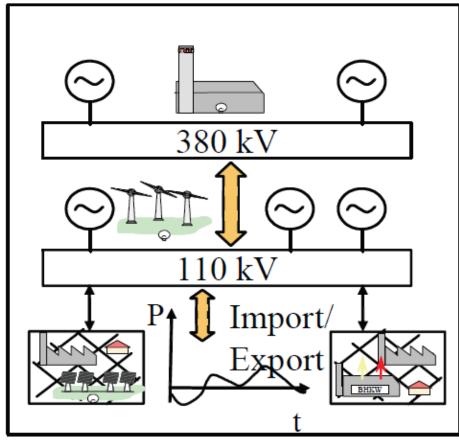


Unser Portfolio

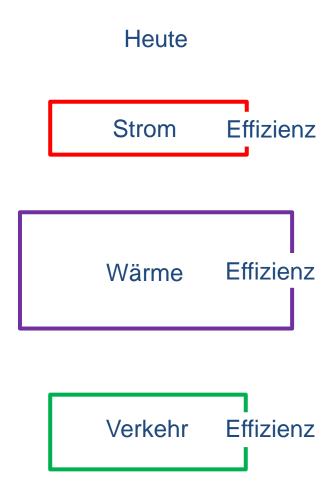
Nachhaltige Energieanlagen

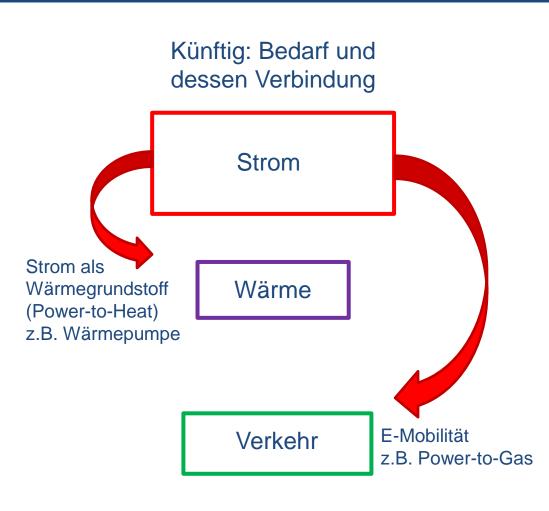

Smart Building / Smart Home


Systemintegrator für vernetzte Gebäudetechnologie

Herausforderung

Traditionelle Erzeugung




Dezentrale Erzeugung

Quelle: VDE

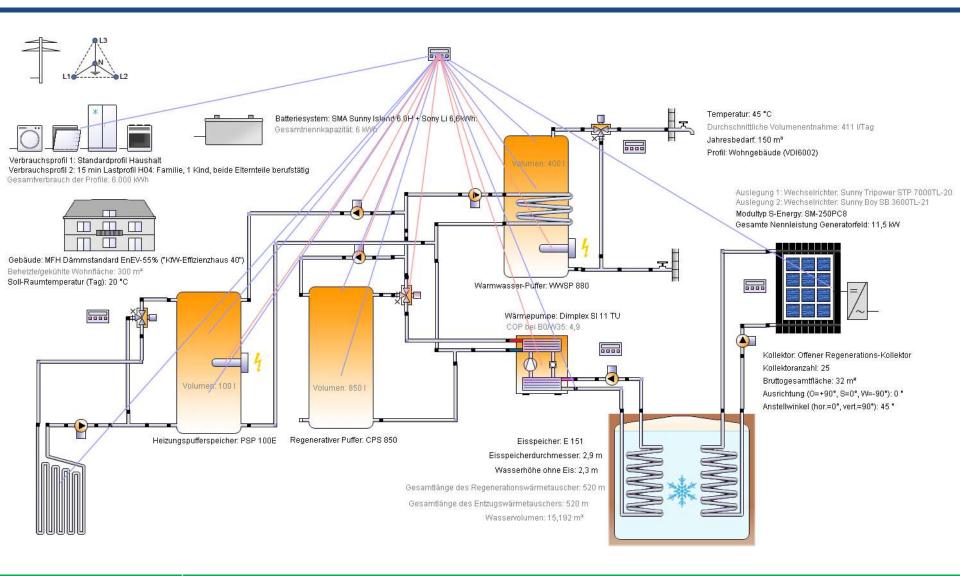
Vernetzung der Energie

Smart Grid

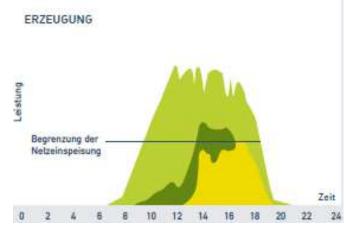
Smart Building

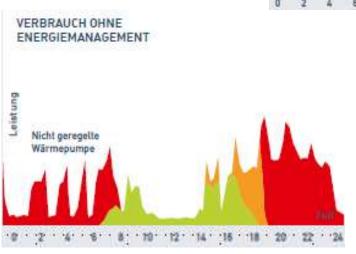
Intelligente Gebäude als flexible Plattform der Energieversorgung:

- Vernetzung der Gewerke im Gebäude (Elektrik, Heizung/Kühlung, Mobilität, Smart Building)
- Kommunikation von Smart Building mit Smart Grid
- Erfassung von Messdaten und schnelle Auswertung
- Systemintegration als übergeordnete Schnittstelle
- → Verknüpfung von Inselsystemen (Teilsysteme zu einem symbiotischen Netzwerk führen)
- → Sicherheit der Funktionalität
- → Sicherheit der Datenflüsse


Vernetzte Energiesteuerung

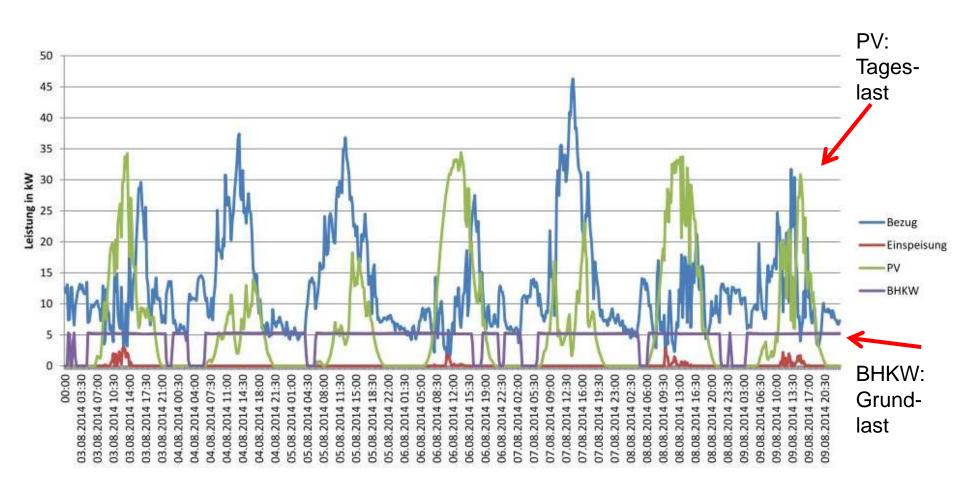
Zentrale Regelung





Vernetzte Energiesteuerung

Maximaler Nutzen durch effiziente Steuerung von Energieerzeugung und Energieverbrauch



Vernetzte Energiesteuerung

Maximaler Nutzen durch effiziente Steuerung von Energieerzeugung und Energieverbrauch

Energieeffizienz DIN 15232

Von der Automation betroffene Gewerke

✓ Direkte Relevanz

✓ Indirekte Relevanz

Gewerk			Wohngebäude	Nichtwohngebäude
Heizung	ш	Raumtemperaturregelung	✓	✓
		Hallentemperaturregelung	×	✓
		Regelung von Vorlauftemperatur/ Umwälzpumpen (Wärmeverteilung)	~	✓
		Regelung des Erzeugers (Wärmeerzeugung)	✓	✓
		Trinkwarmwassererzeugung und -verteilung	×	×
Kühlung	*	Raumtemperaturregelung	4	✓
		Regelung von Vorlauftemperatur/ Umwälzpumpen (Kälteverteilung)	×	✓
		Regelung des Erzeugers (Kälteerzeugung)	×	✓
Lüftung	#	Volumenstromregelung	✓	✓
Beleuchtung	•	Präsenzbasierte/tageslichtgeführte Regelung	×	✓
Verschattung	schattung Steuerung auf Basis Präsenz / Solareinstrahlu		√	✓
Management	Oo	Nutzereingabemöglichkeit / Optimierung	✓	4

Energieeffizienz DIN 15232

Gebäudeautomation ist im Energieausweis anrechenbar

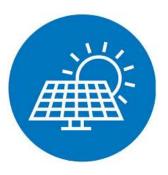
Einteilung des Grades der Automation in Energieeffizienzklassen A bis D: Beispiel Lüftungsregelung:

Keine Regelung	D	-	
Manuelle Regelung	D	.m	
Zeitabhängige Regelung	С	_	- Zeitprogramm
Anwesenheitsabhängige Regelung	В	Herabsetzung des Volumen- stroms bei Abwesenheit senkt Strombedarf der Ventilatoren	 Präsenzerkennung Belegungsauswertung Luftqualitätssteuerung Stellantriebsaktor (Fensterüberwachung)
Bedarfsabhängige Regelung	A	Bedarfsabhängige Regelung des Volumenstroms nach Luft- qualität senkt den Strombedarf auf das Minimum	 Luftqualitätsmessung Präsenzerkennung Belegungsauswertung Luftqualitätsregelung Stellantriebsaktor (Fensterüberwachung)

Infos unter http://www.igt-institut.de/enev/

Smartes Energiekonzept

Smartes Energiekonzept



Fernwärme

Luft-Wasser-WP

Zentrale Abluftanlage

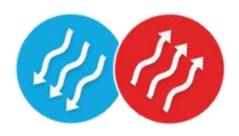
Warmwasserbereitung

PV

Weiterführende Konzeption

- Intelligentes Energiemanagement auf Grundlage einer übergreifenden Steuerung
- Nutzung von überschüssigem PV-Strom zur Warmwasserbereitung (Wärmepumpe und Elektro-Heizstab)
- Zusätzliche Einbindung eines Batteriespeichers
- Kostenoptimale Wärmebereitstellung (Fernwärme ◄► eigene Wärmegestehung mit WP)

Weiterführende Konzeption



Einbindung von E-Mobilität in das Gebäudekonzept

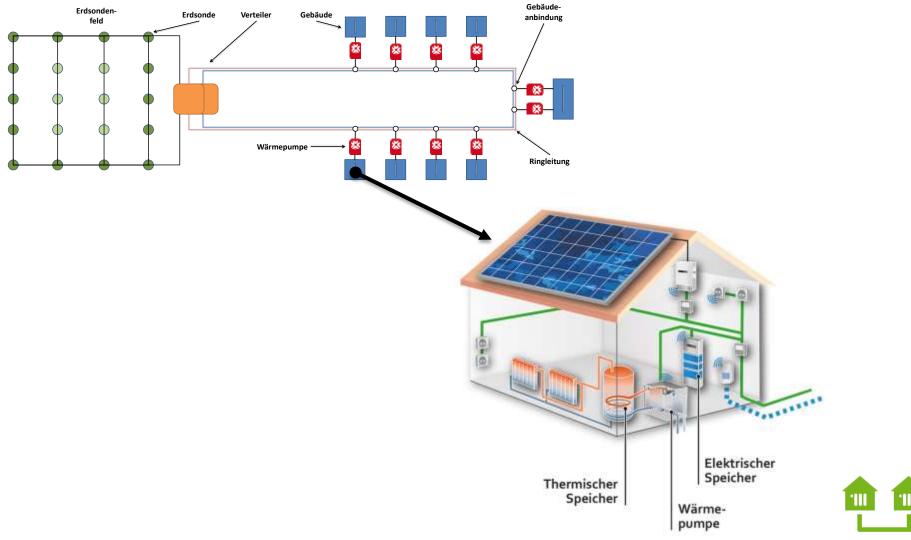
Energetische Quartierslösung

Wärmerückgewinnung (zentrale Abluftanlage)

Weiterführende Konzeption

 Realisierung von nachhaltigem Mieterstrom in Verbindung mit E-Mobilität

Intelligentes Lastmanagement in Verbindung mit Quartierslösung



 Vorbereitung zur Nutzung flexibler Energietarife (kosteneffiziente Energieversorgung)

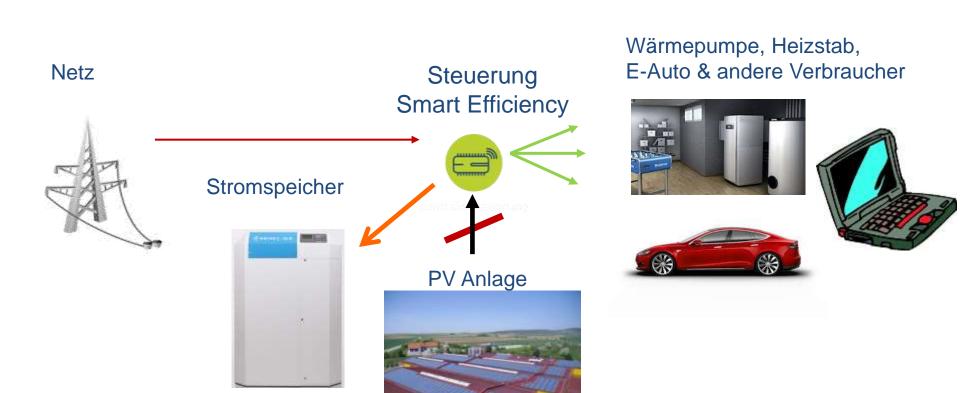
Das Gebäude im Quartier

Smartes Energiekonzept


Smart Building

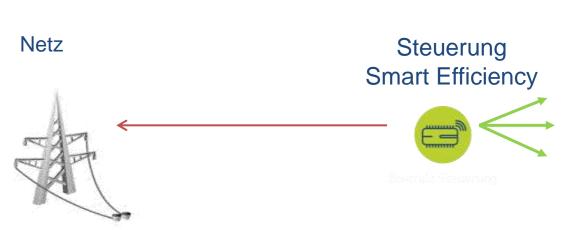
Systemintegrator

Smart und Efficient = Smart Efficiency



Smart Building – Smart Grid

Netzstabilisierung durch Verbrauchsmanagement - Netzüberlast

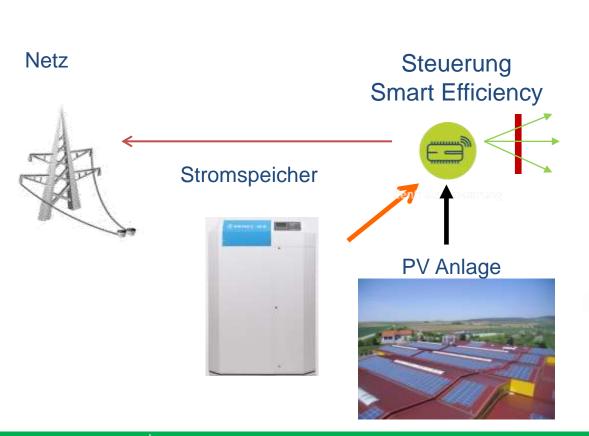


Smart Building – Smart Grid

Netzstabilisierung durch Verbrauchsmanagement - Netzdefizit

Wie funktioniert die Anbindung an das Energiemanagement im Gebäude?

Wärmepumpe, Heizstab, E-Auto & andere Verbraucher

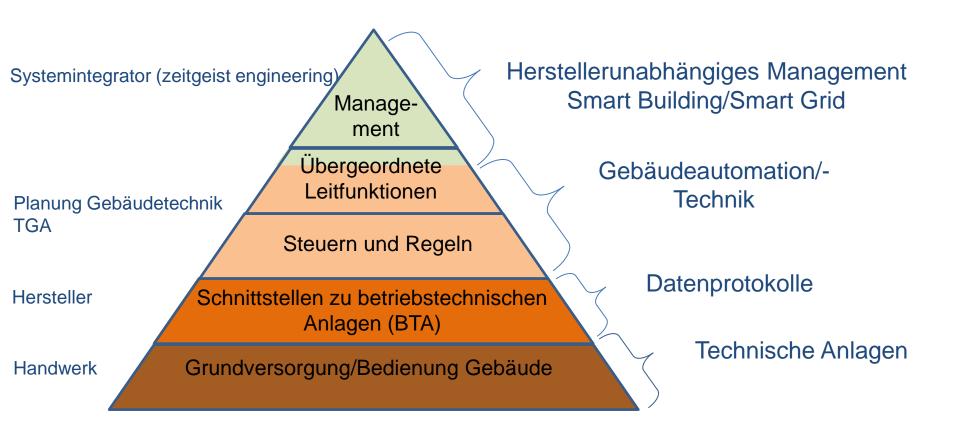


Smart Building – Smart Grid

Netzstabilisierung durch Verbrauchsmanagement - Netzdefizit

Wie funktioniert die Anbindung an das Energiemanagement im Gebäude?

Wärmepumpe, Heizstab, E-Auto & andere Verbraucher



Zentrale Regelung

Struktur der Gebäudeautomation (Vernetzung der Gewerke)

Systemintegrator

Energiekonzepte

Orchestrierung von:

- BHKW
- PV-Anlagen
- Wärmepumpen
- Windkraftanlagen
- Speichersystemen
- Klimageräten
- Elektromobilität

....

Smart Efficiency

Bündelung

von

Energiemanagement

und

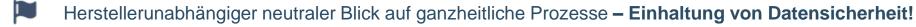
Smart Building Systeme

n

einer zentralen übergeordneten Anwendung/Logik

Smart Building Systeme

Integration von:


- Smart Building
- Raumtemperaturregelung
- Beleuchtung
- Beschattung
- Security
- Multimedia
- Wettersensoren
- Arbeitsplätze

•••

Unsere Arbeitsweise

- Individuelle Beratung, Planung und Abstimmung Der Kunde bleibt nicht im Regen
- Abgestimmte Gesamtpakete für individuelle Anforderungen Der Kunde bekommt eine Lösung
- Erreichung von Energieeffizienzsteigerung und Nutzerorientierung Fokus auf den Kundennutzen
- Maximale Kosteneinsparung Der Kunde bekommt nur das was seinen Anforderungen entspricht
 - Alles aus einer Hand Gewerkübergreifende Betrachtung

Sicherheit

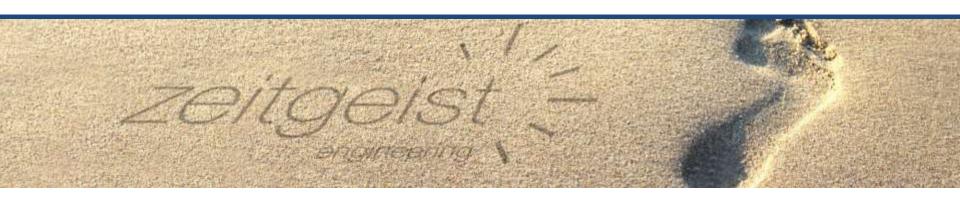
Sicherheit gegen unerlaubten Zugriff

- Netzwerk-Check bei Installation
- Gebäudeautomation läuft über eigenes virtuelles Lan
- Fernzugriff bspw. über gesicherte VPN Verbindung
- Unterschiedliche Benutzer mit eingegrenzten Rechten

Sicherheit für Ihre Daten

- Lokale Speicherung der Daten (auch bei Fernzugriff)
- Verwendung von offenen, herstellerunabhängigen Protokollen

Chancen und Nutzen


Neue Geschäftsfelder:

- Neue T\u00e4tigkeitsfelder im Zuge verst\u00e4rkter Automatisierung (Netze bis in das Geb\u00e4ude denken)
- Durch Vernetzung der Kernkompetenzen erhöht sich der Spezialisierungsgrad
- Verstärkte Zusammenarbeit zwischen Energieerzeugern Netzbetreibern Endnutzern
- Großes Potential der Energieeinsparung und Teilhabe am Energiemarkt
- Neue Markt-/Geschäftsmodelle → Aus Verbrauchern werden Netzstabilisatoren

Sicherheit durch Intelligenz:

- Koordiniertes Zusammenspiel dezentraler Systeme zur Gesamtstabilität (Subsidiaritätsprinzip der Energie)
 - → So viel Zentralisierung wie nötig, so viel Dezentralisierung wie möglich
- Die richtige Abstimmung innerhalb der Zusammenfassung von dezentralen Systemen
 - → Einzelfunktionalitäten werden gesteuert, aber nicht ersetzt (Ausfallsicherheit)
- Datensicherheit durch eine lokale Gesamtkonzeption (die Daten bleiben lokal)
 - → Abgestimmte Datenverwaltung durch zentrale Aussteuerung

zeitgeist engineering gmbh

Äußere Sulzbacher Str. 29 90491 Nürnberg

Telefon: 0911 21 707 400 Fax: 0911 21 707 405

E-Mail: thomas.vogel@ib-zeitgeist.de

www.ib-zeitgeist.de

Heute das tun was auch morgen noch gut ist!